Theo Dãy tỉ số = ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
Để \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
=> 12 = 6x => x = 2
Ta có \(\frac{2.2+1}{5}=\frac{3y-2}{7}\Leftrightarrow1=\frac{3y-2}{7}\Leftrightarrow3y-2=7\Rightarrow3y=9\Leftrightarrow y=3\)
Vậy x = 2 ; y = 3
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> 6x = 12 => x=2 (bài này không có z)
Ta có: \(\frac{2.2+1}{5}=\frac{3y-2}{7}\)
=> \(1=\frac{3y-2}{7}\)
=> 3y-2 = 7
=> y=3
Vậy x=2 và y=3