Ta có: 2xy-x+y-2=0
⇔ 2xy-x=2+y
⇔ x.(2y-1)=y+2
⇒ x= \(\frac{y+2}{2y-1}\)
Vì x nguyên nên \(\frac{y+2}{2y-1}\) cũng nguyên.
Ta có: \(\frac{y+2}{2y-1}=\frac{2y+4}{2y-1}=\frac{\left(2y-1\right)+5}{2y-1}=1+\frac{5}{2y-1}\)
Để \(\frac{y+2}{2y-1}\) nguyên thì \(\frac{5}{2y-1}\) nguyên
⇒ 2y-1 ∈ Ư(5) = {-5;-1;1;5}
⇔ y ∈ { -2;0;1;3 }
⇒ x ∈ {0;-4;6;2}
Vậy (x;y)={(0;-2); (-4;0); (6;1); (2;3)}