Tìm các số nguyên x thỏa mãn:
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+2\right):2}=1\frac{2009}{2011}\)
Tìm x biết: \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+2\right):2}=\)\(1\frac{2009}{2011}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
Tìm x biết \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
Tim x thuoc Z, biet: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x+\left(x+2\right):2}=1\frac{2009}{2011}\)
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=\frac{2009}{1}+\frac{2010}{2}+\frac{2011}{3}+...+\frac{4016}{2008}-2008\)
Bài \(1:\)TÌM \(x:\)
\(a,\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{2013}\)
\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(c,\frac{x+5}{205}+\frac{x+4}{204}+\frac{x+3}{203}=\frac{x+166}{366}+\frac{x+167}{367}+\frac{x+168}{368}\)
\(d,\) \(x.\)\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}{\frac{2011}{1}+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{2}{2011}+\frac{1}{2012}}=1\)
Bài 1. Tính:
a) (2008.2009.2010.2011).\(\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)
Bài 2. Tìm x biết:
a)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
b)\(\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}.\frac{1}{6}.\left(x-1,010\right)=\frac{1}{360}-\frac{1}{720}\)