\(2\left|2x-6\right|=\dfrac{5}{6}-\left|x-3\right|\)
2:\(\left|x+2013\right|+\left|x+2014\right|+\left|x+2045\right|=2\)
3:\(\left|2x-1\right|=\left|x+1\right|\)
4:\(\sqrt{\left(x+\sqrt{5}\right)}+\sqrt{\left(y-\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
1.Chứng tỏ rằng:
A=75.(42004+42003+...+42+4+1)+25 chia hết cho 100
2.tính nhanh:
\(A=\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
\(B=\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{\sqrt[3]{2}}{35}\right).\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{\sqrt[3]{2}}{25}-\frac{\sqrt{2}}{5}\right).\frac{5}{7}}\)
3.a)tính giá trị của biểu thức A=3x2-2x+1 với |x|=\(\frac{1}{2}\)
b)Tìm x nguyên để \(\sqrt{x+1}\)chia hết cho \(\sqrt{x-3}\)
tính
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right].\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\frac{1}{7}:\frac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^3:\frac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\)
tìm x,y,x
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
so sánh A và B:
\(A=\sqrt{225}-\frac{1}{\sqrt{5}}-1\) \(B=\sqrt{196}-\frac{1}{\sqrt{6}}\)
ai giải đc câu nào thì giải giúp với
Cho biết phần nguyên của số hữu tỉ x(ký hiệu là [x]) là số nguyên lớn nhất không vượt quá x(viết là [x]\(\le\)x <[x]+1)
Tính \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{34}\right]+\left[\sqrt{35}\right]\)
1.Tìm các số x, y, z thỏa mãn đẳng thức\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
2.Tìm x,y,z biết : \(x+y=x\div y=3\left(x-y\right)\)
Cho A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
Tìm tập xác định và rút gọn A
Tìm x, biết:
a) \(\dfrac{-3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
b) \(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
Giải hệ phương trình (ẩn số x,y,z):\(\hept{\begin{cases}x+y+z=6\left(1\right)\\x^2+y^2+z^2=18\left(2\right)\\\sqrt{x}+\sqrt{y}+\sqrt{z}=4\left(3\right)\end{cases}.}\)
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !