Cho x,y,z là các số thực thỏa mãn x+y+z=6 và xy+yz+xz=9
Chứng minh rằng (x-1)+\(\left(y-2\right)^2+\left(z-3\right)^4\)<88
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Cho x,y là số thực thỏa mãn \(x^2+y^2+xy-3x-3y+3=0\). Chứng minh biểu thức P = \(\left(3x+2y-6\right)^{1010}+\left(x-y+1^{1011}\right)+2021\) có giá trị là một số nguyên
Tìm tất cả các cặp số nguyên x,y thỏa mãn đẳng thức : \(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
CHo x,y là các số thực thỏa mãn \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0.}\)0.Tính giá trị lớn nhất của P=xy.
cho x, y là các số thực thỏa mãn x khác y , xy=1. chứng minh \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
Tìm các cặp số (x;y) thỏa mãn
\(2x^2\left(1-y\right)+y\left(y+xy-2x\right)=0\)
Cho các số thực x ,y, z thỏa mãn : x\(\ge-1,y\ge-1,z\ge-4\)
Tìm GTLN : P = \(\frac{x^2}{x^2+y^2+4\left(xy+1\right)}+\frac{y^2-1}{z\left(3+z\right)+x+y+2}\)