a, \(A=x^2+y^2+2x+2y+2=0\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow A\ge0\)
\(''=''\Leftrightarrow x=y=-1\)
b, \(B=2x^2+2xy+y^2=0\Leftrightarrow B=x^2+2xy+y^2+x^2=0\)
\(\Leftrightarrow B=\left(x+y\right)^2+x^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow B\ge0\)
\(''=''\Leftrightarrow x=y=0\)