a, x = 0 ; y = 0
hoặc x = 2 ; y = 2
b,x = 0 , y = 0
a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(2\) |
\(y-1\) | \(-1\) | \(1\) |
\(y\) | \(0\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)
b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(-3\) | \(1\) | \(3\) |
\(x\) | \(0\) | \(-2\) | \(2\) | \(4\) |
\(y-1\) | \(-3\) | \(-1\) | \(3\) | \(1\) |
\(y\) | \(-2\) | \(0\) | \(4\) | \(2\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\), \(\left(-2;0\right)\), \(\left(2;4\right)\), \(\left(4;2\right)\)