\(\frac{2x^2+1}{x+2}=\frac{2x^2+4x-4x-8+9}{x+2}=\frac{2x\left(x+2\right)-4\left(x+2\right)+9}{x+2}=2x-4+\frac{9}{x+2}\)
\(\Rightarrow x+2\inƯ\left(9\right)\Rightarrow x+2\in\left\{-9;-3;-1;1;3;9\right\}\Rightarrow x\in\left\{-11;-5;-3;-1;1;7\right\}\)
Cách 2:
\(\frac{2x^2+1}{x+2}=\frac{2\left(x^2-2^2\right)+9}{x+2}=\frac{2\left(x-2\right)\left(x+2\right)+9}{x+2}=2\left(x-1\right)+\frac{9}{x+2}\)
\(\Rightarrow x+2\inƯ\left(9\right)\Rightarrow x+2\in\left\{-9;-3;-1;1;3;9\right\}\Rightarrow x\in\left\{-11;-5;-3;-1;1;7\right\}\)