a) Để \(1:x\)là số nguyên
\(\Rightarrow x\inƯ\left(1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1,1\right\}\)
b) Để \(1:x-1\)là số nguyên
\(\Rightarrow x-1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ Với \(x-1=-1\)\(\Rightarrow\)\(x=-1+1=0\left(TM\right)\)
+ Với \(x-1=1\)\(\Rightarrow\)\(x=1+1=2\left(TM\right)\)
Vậy \(x\in\left\{0,2\right\}\)
c) Để \(2:x\)là số nguyên
\(\Rightarrow x\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1,-2,1,2\right\}\)
d) Để \(-3:x-2\)là số nguyên
\(\Rightarrow x-2\inƯ\left(-3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1,1,3,5\right\}\)
e) Ta có: \(x+8=\left(x+7\right)+1\)
- Để \(x+8⋮x+7\)\(\Rightarrow\)\(\left(x+7\right)+1⋮x+7\)mà \(x+7⋮x+7\)
\(\Rightarrow\)\(1⋮x+7\)\(\Rightarrow\)\(x+7\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ Với \(x+7=-1\)\(\Rightarrow\)\(x=-1-7=-8\left(TM\right)\)
+ Với \(x+7=1\)\(\Rightarrow\)\(x=1-7=-6\left(TM\right)\)
Vậy \(x\in\left\{-8,-6\right\}\)
a,để 1 chia x là số nguyên và x∈Z thì x ∈Ư(1)⇒x∈{±1} vậy x =1 hoặc -1
b,
b, Ta có: 1⋮⋮x-1
⇒x-1∈Ư(1)={±1}
x-1=1⇒x=2
x-1=-1⇒x=0
Vậy x∈{2;0}