\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\)( n \(\inℕ\))
Để \(\frac{n+2}{n+1}\)là số tự nhiên thì \(\left(n+2\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà ( n + 1 ) chia hết cho ( n + 1 ) nên 1 chia hết cho n + 1
\(\Rightarrow n+1\inƯ\left(1\right)\)
Ư(1) = { 1 ; -1 }
\(\Rightarrow n+1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{0;-2\right\}\)
Mà n \(\inℕ\)nên n = 0
Vậy n = 0
\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\inℕ\Leftrightarrow n+2⋮n+1\)
\(\Rightarrow n+1+1⋮n+1\)
\(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(n\inℕ\Rightarrow n+1\inℕ\)
\(\Rightarrow n+1=1\)
\(\Rightarrow n=0\)
\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}\)
Để \(\frac{n+2}{n+1}\)là số tự nhiên thì n+2 \(⋮\)n+1
=> n+1+1\(⋮\)n+1
Mà n+1\(⋮\)n+1 nên 1 \(⋮\)n+1
Vì n thuộc N => n = 0
tk mình nha