\(A=x^2-x+1\)
\(=x^2-2x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x^2-2x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\) nên:
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}\)
A=x2-x+1=x2-2.x.1/2+1/4+3/4
=(x-1/2)2+3/4
Vì (x-1/2)2\(\ge\)0 nên (x-1/2)2+3/4\(\ge\)3/4
Vậy GTNN của A là 3/4 tại x-1/2=0
x=1/2