Cho A=\(\left(\frac{2-\sqrt[3]{4x}}{x-\sqrt[3]{2x^2}}+1\right):\left(\sqrt[3]{2}+\sqrt[3]{x}\right)-\frac{1}{\sqrt[3]{x}}\) \(\left(x\ne0;x\ne-2\right)\)
Tìm x để \(A^3\)là số nguyên
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
\(choA=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right).\left(\frac{2\sqrt{x}+4}{\sqrt{x}+3}-1\right)\)
a rút gọn A
b tìm số nguyên x để A có giá trị là số nguyên
A=\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
Tìm giá trị nguyên của x để A là 1 số nguyên
Tìm số nguyên x để biểu thức A =\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)đạt giá trị nguyên
1. A= \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn A
b. Tìm x để A<0
c. Tìm giá trị nhỏ nhất A.
2. M=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{x+4}{x+\sqrt{x}+1}\right)\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị nguyên
3. N=\(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{a.b}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{a.b}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
a. Rút gọn N
b. Tính N khi a=\(\frac{2}{2-\sqrt{3}}\)
c. Tìm số nguyên a để N có giá trị nguyên
Gíup mình với. Cảm ơn nhiều ạ.
1 Tính
\(\frac{\sqrt{7}-5}{2}-\frac{6}{\sqrt{7}-2}+\frac{1}{3+\sqrt{7}}+\frac{3}{5+2\sqrt{7}}\)
2 Cho
\(A=\left(\frac{\sqrt{x}-4}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\)
Rút gọn A
Tìm các giá trị nguyên của x để \(\frac{7}{A}\)là số nguyên
Cho biểu thức: \(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{x-1}\)với \(x\ge0;x\ne1\)
a) Rút gọn biểu thức A
b) Tìm x là số chính phương để 2019A là số nguyên
Cho biểu thức:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn biểu thức P
b)Tìm x để \(p< -\frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)