\(|x-3|+x-3=0\)
\(\Leftrightarrow|x-3|=3-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=3-x\\x-3=-3+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
hok tốt .
\(\left|x-3\right|+x-3=0\)
\(\left|x-3\right|=-x+3\)
\(\left|x-3\right|=3-x\)
Ta có: \(\left|x-3\right|=\left|3-x\right|\)
\(\Rightarrow\left|3-x\right|=3-x\)
\(\Rightarrow3-x\ge0\)
\(\Rightarrow3\ge x\)
\(V\text{ậy}\) \(x\le3\)
| x -3| + x - 3 = 0
=> | x -3| = - x + 3
TH1: x -3 = -x + 3
=> x + x = 3 + 3
=> 2x = 6
x = 6:2
x = 3
TH2: x-3 = - ( -x + 3)
x - 3 = x -3
=> x - x = - 3 + 3 = 0
=> x = 0
KL: x = 3 hoặc x = 0