\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}:\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1504}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1504}\)
\(\frac{1}{x+3}=-\frac{11}{7502}\)
\(x+3=\left(7502.1\right):\left(-11\right)\)
\(x+3=7502:\left(-11\right)\)
\(x+3=-682\)
\(x=-682-3\)
\(x=-385\)