a) \(2^{x+2}-2^2=96\)
<=> \(2^x.2^2-2^x=96\)
<=> \(2^x\left(4-1\right)=96\)
<=> \(3.2^x=96\)
<=> \(2^x=32\)
<=> \(2^x=2^5\)
<=> x = 5
b, \(x-\left(\frac{50x}{100}+\frac{25x}{200}\right)=11\frac{1}{4}\)
\(\Rightarrow x-\left(\frac{1x}{2}+\frac{1x}{8}\right)=\frac{45}{4}\)
\(\Rightarrow x-\left(\frac{4x}{8}+\frac{1x}{8}\right)=\frac{45}{4}\)
\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{8x}{8}-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\Rightarrow x=\frac{45}{4}\div\frac{3}{8}=30\)
Vậy x = 30