a. x(x-2)+x-2=0
=> (x-2).(x+1)=0
=> x-2=0 hoặc x+1=0
=> x=2 hoặc x=-1
b. 5x(x-3)-x+3=0
=> 5x(x-3)-(x-3)=0
=> (x-3).(5x-1)=0
=> x-3=0 hoặc 5x-1=0
=> x=3 hoặc x=1/5
a) x(x - 2) + x - 2 = 0;
<=>x.(x-2)+(x-2)=0
<=>(x-2)(x+1)=0
<=>x-2=0 hoặc x+1=0
<=>x=2 hoặc x=-1
b) 5x(x - 3) - x + 3 = 0
<=>5x.(x-3)-(x-3)=0
<=>(x-3)(5x-1)=0
<=>x-3=0 hoặc 5x-1=0
<=>x=3 hoặc x=1/5
a, x( x- 2) + x- 2 = 0
=> x( x - 2) + ( x - 2) = 0
=> ( x + 1)( x - 2) = 0
=> x + 1 = 0 hoặc x - 2 = 0
=> x = -1 hoặc x = 2
b, 5x(x-3) - x + 3 = 0
5x(x - 3) - ( x - 3) = 0
(5x - 1) ( x - 3) = 0
=> 5x - 1 = 0 hoặc x - 3 = 0
=> x = 1/5 hoặc x = 3
a) x(x - 2) + x - 2 = 0
(x - 2)(x + 1) = 0
Hoặc x - 2 = 0 => x = 2
Hoặc x + 1 = 0 => x = -1
Vậy x = -1; x = 2
b) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc 5x - 1 = 0 => x = .
Vậy x = ; x = 3
a) x(x - 2) + x - 2 = 0
(x - 2)(x + 1) = 0
Hoặc x - 2 = 0 => x = 2
Hoặc x + 1 = 0 => x = -1
Vậy x = -1; x = 2.
b) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc 5x - 1 = 0 => x = 1/5.
Vậy x = 1/5; x = 3.