<=> \(\frac{1}{3.7}+\frac{1}{4.7}+\frac{1}{4.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{2}{2.3.7}+\frac{2}{2.4.7}+\frac{2}{2.4.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
<=> \(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{\frac{x-1}{x+1}}=\frac{2}{9}\right)\)
<=> \(2.\left(\frac{1}{6}-\frac{\frac{1}{x-1}}{x+1}\right)=\frac{2}{9}\)
<=> \(\frac{1}{6}+\frac{1}{x+1}=\frac{1}{9}\)
<=> \(\frac{1}{x-1}=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{1}{x+1}=\frac{1}{18}\)
<=> x + 1 = 18
=> x = 18 - 1
x = 17