Hằng đẳng thức đó bn:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay vào thì: \(-\left(x-3\right)\left(x^2-3x+9\right)=-\left[\left(x-3\right)\left(x^2-3x+3^2\right)\right]\)
\(=-\left(x^3-27\right)=-x^3+27\)
Bài làm:
Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow6x^2+41x-51=0\)
\(\Leftrightarrow6\left(x^2+\frac{41}{6}x+\frac{1681}{144}\right)-\frac{2905}{24}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}\right)^2-\frac{\left(\sqrt{2905}\right)^2}{12^2}=0\)
\(\Leftrightarrow\left(x+\frac{41}{12}-\frac{\sqrt{2905}}{12}\right)\left(x+\frac{41}{12}+\frac{\sqrt{2905}}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2905}-41}{12}\\x=\frac{-\sqrt{2905}-41}{12}\end{cases}}\)
Cho mình hỏi sao ở vế : -(x+3)(x2-3x+9) chỉ = -x3+27
Bạn có thể ko làm theo 2 hằng đẳng thức số 5 và 6 được ko, còn lại được hết . Mình tích đúng cho
Nếu không lm theo HĐT số 5 và 6 thì bạn nhân tung ra rồi rút gọn là xog