(x-1)3 + 1 + 3x (x - 4) = 0
=> (x3-3.x2.1+3.x.12-13) +1 + 3x2 -12x = 0
=> ( x3-3x2+3x) +1 +3x2 -12x=0
=> x3-3x2 + 3x +1 +3x2 -12x = 0
=> x3 + (-3x2+3x2) + (3x-12x) =0
=> x3 - 9x = 0
=> x = 0
(x-1)3 + 1 + 3x (x - 4) = 0
=> (x3-3.x2.1+3.x.12-13) +1 + 3x2 -12x = 0
=> ( x3-3x2+3x) +1 +3x2 -12x=0
=> x3-3x2 + 3x +1 +3x2 -12x = 0
=> x3 + (-3x2+3x2) + (3x-12x) =0
=> x3 - 9x = 0
=> x = 0
tìm x biết
1,\(x^2+x=0\)
1,\(x^2-10x=25\)
3\(\left(x+2\right)^2=x+2\)
4,\(\left(x-6\right)^2-x^2+36=0\)
5\(\left(3x-1\right)^3-\left(5x-2\right)^3-\left(1-2x\right)^3=0\)
a) \(\left(x-9\right)\left(x-7\right)+1\)
b)\(\left(x^2+x-1\right)^2+4x^2+4x\)
c) \(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
d)\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
a) \(\left(x-9\right)\left(x-7\right)+1\)
b)\(\left(x^2+x-1\right)^2+4x^2+4x\)
c)\(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
d)\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
Phân tích đa thức thành nhân tử:
1) A = \(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
2) B = \(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
3) C = \(\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2\)
chứng minh rằng \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\ge-1\)
Rút gọn biểu thức.
a) \(\frac{1}{2}x\left(1+2x\right)+\left(1-x\right)\left(x+2\right)\)
b) \(\left(2x-1\right)^3-\left(3+2x\right)\left(2x-3\right)+8x^2\left(2-x\right)\)
c) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
Phân tích thành nhân tử :
a) \(\left(x+y\right)^2-\left(x-y\right)^2\)
b) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
c) \(x^3+y^3+z^3-3xyz\)
phân tích đa thức thành nhân tử
1.\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
2.\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
3.\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
4.\(a^6-a^4+2a^3+2a^2\)
5.\(\left(a+b\right)^3-\left(a-b\right)^3\)
6.\(x^3-3x^2+3x-1-y^3\)
7.\(x^{m+4}+x^{m+3}-x-1\)
tìm x biết
a) \(6x^3+x^2+x+1=0\)
b)\(5x+20-x^2-4x=0\)
c)\(x\left(2x-7\right)-4x+14=0\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)