Chứng minh rằng (9^2n+1994^93)chia heets cho 5
a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)
\(x\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7}{8}\)
\(x\cdot\frac{7}{8}=\frac{7}{8}\)
\(\Rightarrow x=\frac{7}{8}\div\frac{7}{8}=1\)
b) \(\left(x+4\right)+\left(x+9\right)+\left(x+14\right)+.....+\left(x+44\right)+\left(x+49\right)=1430\)
\(\left(x+x+x+....+x+x\right)+\left(4+9+14+...+44+49\right)=1430\)
\(10x+265=1430\)
\(10x=1430-265\)
\(10x=1165\)
\(\Rightarrow x=\frac{1165}{10}=116,5\)
c) \(x\cdot0,25-0,5=1\)
\(x\cdot0,25=1+0,5\)
\(x\cdot0,25=1,5\)
\(\Rightarrow x=1,5\div0,25=6\)