\(a,\left(x+3\right)\left(x-3\right)+x\left(3-x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)-x\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+3-x\right)=0\)
\(\Rightarrow3\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
\(b,x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
a) \(\left(x+3\right)\left(x-3\right)+x\left(3-x\right)=0\)
\(\Leftrightarrow x^2-3^2+3x-x^2=0\)
\(\Leftrightarrow x^2-x^2+3x-9=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) \(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy tập nghiệm S của phương trình : S = { -1; 3 }