\(\frac{32-x}{7}=\frac{x-42}{9}\)
=\(\frac{\left(32-x\right)9}{63}=\frac{\left(x-42\right)7}{63}\)
\(\Rightarrow\)\(\left(32-x\right)9=\left(x-42\right)7\)
=\(288-x9=x7-294\)
=\(288+294=x9+x7\)
=\(x=-36\frac{6}{16}\)
=\(x\times16=-582\)
\(x=-582\div16\)
a,\(\frac{32-x}{7}=\frac{x-42}{9}\)
\(\Leftrightarrow9\left(32-x\right)=7\left(x-42\right)\)
\(\Leftrightarrow288-9x-7x-294=0\)
\(\Leftrightarrow9x+7x=288-294\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
b. \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+3\right|=-4x^2+4x-1\)
\(\left|x+3\right|=x+3\)khi \(x+3\ge0\)hay \(x\ge-3\)
\(\left|x+3\right|=-\left(x+3\right)\)khi \(x+3< 0\)hay \(x< -3\)
với \(x\ge-3\Rightarrow x+3=-4x^2+4x-1\)
\(\Leftrightarrow4x^2-4x+1+x+3=0\)
\(\Leftrightarrow4x^2-3x+4=0\)\(\Leftrightarrow\)vô nghiệm
với \(x< -3\)\(\Rightarrow-x-3=-4x+4-1\)
\(\Leftrightarrow4x^2-4x+1-x-3=0\)
\(\Leftrightarrow4x^2-5x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{57}}{8}\left(tm\right)\\x=\frac{5-\sqrt{57}}{8}\left(L\right)\end{cases}}\)