\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)-2x=\dfrac{1}{2}\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)-2x=\dfrac{1}{2}\)
\(\left(1-\dfrac{1}{100}\right)-2x=\dfrac{1}{2}\)
\(\dfrac{99}{100}-2x=\dfrac{1}{2}\)
2x = \(\dfrac{99}{100}-\dfrac{1}{2}=\dfrac{49}{100}\)
x = \(\dfrac{49}{100}:2=\dfrac{49}{200}\)