\(\left(\frac{3}{4}x-\frac{1}{2}\right).\left(0,25x+\frac{4}{3}\right)=0\)
\(\left(\frac{3}{4}x-\frac{1}{2}\right).\left(\frac{1}{4}x+\frac{4}{3}\right)=0\)
TH1: \(\frac{3}{4}x-\frac{1}{2}=0\)
\(\frac{3}{4}x=\frac{1}{2}\)
\(x=\frac{2}{3}\)
TH2: \(\frac{1}{4}x+\frac{4}{3}=0\)
\(\frac{1}{4}x=-\frac{4}{3}\)
\(x=-\frac{16}{3}\)
Vậy \(x\in\text{{}\frac{2}{3};-\frac{16}{3}\)}
\(\left(\frac{3}{4}x-\frac{1}{2}\right)\left(0,25x+\frac{4}{3}\right)=0\)
\(\Rightarrow\left(\frac{3}{4}x-\frac{1}{2}\right)\left(\frac{1}{4}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{4}x-\frac{1}{2}=0\\\frac{1}{4}x+\frac{4}{3}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{4}x=\frac{1}{2}\\\frac{1}{4}x=-\frac{4}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{16}{3}\end{cases}}\)
Vậy...