\(2^{x-1}+5.2^{x-2}\)
\(=2^{x-1}+10.2^{x-1}\)
\(=10.2^{x-1}\)
\(=5.2^x\)
\(2^{x-1}+5.2^{x-2}\)
\(=2^{x-1}+10.2^{x-1}\)
\(=10.2^{x-1}\)
\(=5.2^x\)
Tìm x:
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
cho \(\frac{2x+1}{5}=\frac{3x-2}{7}=\frac{2x+3y-1}{6x}\) tìm x,y
x=2 phải ko
Tìm x (theo dang tỉ lệ thức)
a)\(\frac{x+2}{-5}=\frac{2}{15}\)
b)
\(\frac{x-1}{3}=\frac{2x+5}{5}\)
c)\(\frac{-3}{3x-2}=\frac{4}{2x+1}\)
A= \(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Rút gọn và tìm x thuộc z để A thuộc z
1 Tìm x:
( \(3x-2\frac{1}{3}\)):( \(3\frac{1}{4}-5\frac{2}{3}+1\frac{4}{5}\)) = \(2-1\frac{1}{3}x\)
2. Tìm x:
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
3. Tìm x:
\(\left(1+3x\right)^2-3x\left(2x+6\right)=\left(4-3x\right)\left(x+3\right)-\left(2x-1\right)^2\)
Tìm x, biết:
a, \(\frac{1}{4}\)+ \(\frac{1}{3}\): 2x = -5
b, ( 3x - \(\frac{1}{4}\)) . ( x + \(\frac{1}{2}\)) = 0
c, ( 2x - 5 ) . ( \(\frac{3}{2}\)x + 9 ) . ( 0,3x - 12 ) = 0
Tìm x
a) \(\frac{3}{5}^{2x+1}\)=\(\frac{81}{625}\)
b)\(\left(\frac{2}{3}^x\right)\). \(\left(\frac{2}{3}^3\right)\)=\(\frac{32}{243}\)
c)(2x-1)\(^2\)=(2x-1)\(^3\)
1. Chứng minh:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{2016\sqrt{2015}}<\frac{88}{45}\)
2. Rút gọn: A= \(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{13-3x^2}\right)\times\frac{24-12x}{6+13x}\)
3, Cho 2x;3y tỉ lệ nghịch với 3,4;x và z tỉ lệ thuận với 4,5; x-2y+3z=1. Tính x-y-z
4. Tìm x: \(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
Tìm x thuộc Z để các biểu thức sau là số nguyên:
a/ A= \(\frac{2x-5}{3}\)
b/ B= \(\frac{5}{2x+1}\)
c/ C= \(\frac{2x-3}{x+1}\)