\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow-5x-\frac{1}{5}-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\left(-5x-\frac{1}{2}x\right)+\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\left(\frac{-10}{2}x-\frac{1}{2}x\right)+\left(\frac{5}{15}-\frac{3}{15}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\frac{-11}{2}x+\frac{2}{15}=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\frac{-11}{2}x-\frac{3}{2}x=-\frac{5}{6}-\frac{2}{15}\)
\(\Leftrightarrow\frac{-14}{2}x=-\frac{25}{30}-\frac{4}{30}\)
\(\Leftrightarrow-7x=-\frac{29}{30}\)
\(\Leftrightarrow x=-\frac{29}{30}\times\frac{-1}{7}\)
\(\Leftrightarrow x=\frac{29}{210}\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(\Leftrightarrow3x-\frac{3}{2}-5x-3=\frac{1}{5}-x\)
\(\Leftrightarrow\left(3x-5x\right)-\left(\frac{3}{2}+3\right)=\frac{1}{5}-x\)
\(\Leftrightarrow-2x-\left(\frac{3}{2}+\frac{6}{2}\right)=\frac{1}{5}-x\)
\(\Leftrightarrow-2x-\frac{9}{2}=\frac{1}{5}-x\)
\(\Leftrightarrow-2x+x=\frac{1}{5}+\frac{9}{2}\)
\(\Leftrightarrow-x=\frac{2}{10}+\frac{45}{10}\)
\(\Leftrightarrow-x=\frac{47}{10}\)
\(\Leftrightarrow x=\frac{-47}{10}\)
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=0-\frac{1}{9}\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\div3\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\times\frac{1}{3}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{-1}{3}+\frac{1}{2}\)
\(\Leftrightarrow3x=\frac{-2}{6}+\frac{3}{6}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{6}\div3\)
\(\Leftrightarrow x=\frac{1}{6}\times\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{18}\)