UC(n + 3 ; 2n + 5) = U(UCLN(n + 3 ; 2n + 5))
Đặt UCLN(n + 3 ; 2n + 5) = d
n + 3 chia hết cho d
< = > 2( n +3) chia hết cho d
< = > 2n + 6 chia hết cho d
Mà 2n + 5 chia hết cho d
< = > [(2n + 6) - (2n + 5)] chia hết cho d
< = > 1 chia hết cho d
< = > d = 1
Vậy UCLN(n + 3 ; 2n + 5) = U(1) = {1}
gọi d là UC của n+3 và 2n+5
=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1
mà d là ước của 2n+5 => d là ước của 1 => d = 1