Cho ( C ) : y = 2 x + 3 x + 1 . Tính bán kính R của đường tròn (W) tâm I(-1;2) và tiếp xúc (C).
Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu đó
A. I(-1;2;3), R=2
B. I(-1;2;-3), R=4
C. I(1;-2;3); R=2
D. I(1;-2;3), R=4
chỉ mik cách lập nhóm nha
Trích một số bài toán trong đề:
+ Trên mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa mãn điều kiện /z/ = 2 là:
A. Đường tròn tâm O, bán kính R = 2
B. Đường tròn tâm O, bán kính R = 4
C. Đường tròn tâm O, bán kính R = 1/2
D. Đường tròn tâm O , bán kính R = căn 2
+ Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây đúng?
A. Hàm số y = f(x) có giá trị cực đại bằng 0
B. Giá trị lớn nhất của hàm số y = f(x) trên tập R là 1
C. Hàm số y = f(x) đạt cực đại tại x = 0 và cực tiểu tại x = -1
D. Hàm số y = f(x) có đúng một cực trị
+ Tìm phần thực của số phức (2 + 3i).i^10
Trong không gian Oxyz, cho bốn điểm A(1;2;-4), B(1;-3;1), C(2;2;3), D(1;0;4). Gọi (S) là mặt cầu đi qua bốn điểmA,B,C,D. Tọa độ tâm I và bán kính R mặt cầu (S) là
Cho mặt cầu (S) có đường kính là AB biết rằng A(6; 2; -5), B(-4; 0; 7) Tìm tọa độ tâm I và bán kính r của mặt cầu (S).
Trong không gian Oxyz, cho mặt cầu (S): ( x + 2 ) 2 + ( y + 1 ) 2 + z 2 = 81 . Tìm tọa độ tâm I và bán kính R của (S)
Trong không gian Oxyz, cho mặt phẳng (S): ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 .Tìm tọa độ tâm I bán kính R của (S)
A. I(-2;1;-1), R=3
B. I(-2;1;-1), R=9
C. I(2;-1;1), R=3
D. I(2;-1;1), R=9
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(-1;2;1), R=9
B. I(1;-2;-1), R=9
C. I(1;-2;-1), R=3
D. I(-1;2;1), R=3
Trong không gian Oxyz, cho mặt cầu (S): ( x + 2 ) 2 + ( y + 1 ) 2 + z 2 = 81 . Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S)