Theo bài ra ta có:
2x-y/x+y=2/3
=>3(2x-y)=2(x+y)
6x-3y=2x+2y
=>(6x-3y)-(2x+2y)=0
6x-3y-2x-2y=0
4x-y=0
=>4x=y
=>x/y=1/4
Theo đầu bài ta có:
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy.........
Cho mình sửa lại:
6x-3y-2x-2y=0
4x-5y=0
4x=5y
=>x/y=5/4
Thử lại:
Do \(\frac{x}{y}=\frac{5}{4}\Rightarrow x=5k;y=4k\)
Từ đó suy ra:\(\frac{2x-y}{x+y}=\frac{2\cdot5k-4k}{5k+4k}=\frac{10k-4k}{5k+4k}=\frac{6k}{9k}=\frac{2\cdot3k}{3\cdot3k}=\frac{2}{3}\)( đpcm )
Vậy \(\frac{x}{y}=\frac{5}{4}\)
Ta có:
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)\(\Leftrightarrow6x-2x=2y+3y\)\(\Leftrightarrow4x=5y\)\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Ta có:\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)suy ra:[2x-y]3=[x+y]2
suy ra:6x-3y=2x+2y
=6x-2x=3y+2y
=4x=5y
suy ra:\(\frac{x}{y}\)=\(\frac{4}{5}\)
Vậy x=4;y=5
Ta có : \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=>(2x-y).3= 2(x+y)
6x-3y = 2x+2y
6x-2x =3y+2y
4x=5y
=> 5/4=x/y