\(\Rightarrow ab=3a-3b\Leftrightarrow ab+3b=3a\)
\(\Leftrightarrow b\left(a+3\right)=3a\Rightarrow b=\dfrac{3a}{a+3}\left(a\ne-3\right)\)
\(\Rightarrow b=\dfrac{3\left(a+3\right)-9}{a+3}=3-\dfrac{9}{a+3}\)
Để b là số nguyên thì
a+3 phải là ước của 9
\(\Rightarrow a+3=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-12;-4;-2;6\right\}\)
\(b=\left\{4;12;-6;2\right\}\)
xin lỗi còn thiếu trường hợp \(a+3=\pm3\) bạn bổ xung và tính nốt nhé