Ta có: A= \(2^8+2^{11}+2^n=\)\(=2304+2^n=9.256+2^n=2^8\left(9+2^{n-8}\right)\)
Vây để biểu thức là số hữu tỷ thì A là số chính phương, vậy \(9+2^{n-8}=m^2\)
=> \(2^{n-8}=\left(m-3\right)\left(m+3\right)\)
Đặt: \(\hept{\begin{cases}m+3=2^k\\m-3=2^l\end{cases}}\), Nếu k\(\ge\)4, ta có:\(6=\left(m+3\right)-\left(m-3\right)=2^k-2^l\ge2^k-2^{k-1}\ge8\)(vô lý)
Vậy k=1,2,3
thay k=3 thì m=5,n=12
Vậy n=12
Cách 2: Đặt \(\left(2^8+2^{11}+2^n\right)=\left(2^a+2^b\right)^2=2^{2a}+2^{a+b+1}+2^{2b}\)
Vai trò của a,b như nhâu nên
Từ đây dễ dàng chọn: 2a=8 => a=4 => b=6