Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
KuDo Shinichi

Tìm tất cả các số tự nhiên có 6 chữ số thỏa mãn: 

- Số tạo thành bởi 3 chữ số cuối lớn hơn số tạo thành bởi 3 chữ số đầu 1 đơn vị

- Số đó là số chính phương

Trần Phúc
28 tháng 7 2017 lúc 18:30

Gọi số phải tìm là: \(n=\overline{a_1a_2a_3a_4a_5a_6}\)

Đặt \(x=\overline{a_1a_2a_3}\left(x\varepsilon N\right)\Rightarrow\overline{a_4a_5a_6}=\overline{a_1a_2a_3}+1=x+1\)

\(\Rightarrow n=\overline{a_1a_2a_3a_4a_5a_6}=\overline{a_1a_2a_3}.1000+\overline{a_4a_5a_6}=x.1000+\left(x+1\right)=1001x+1\)

Do n là số chính phương nên ta sẽ có: \(1001x+1=y^2\left(y\varepsilon N\right)\)

\(\Rightarrow y^2-1=1001x\Leftrightarrow\left(y-1\right)\left(y+1\right)=7.11.13.x\)

Ta lại có: \(100\le x\le999\Rightarrow317\le y\le1000\)( * )

Các số 7,11,13 là các số nguyên tố nên \(\left(y-1\right)\left(y+1\right)\)phải chia hết cho 7; 11 và 13. Kết hợp với điều kiện ( * ) ta có:

  - Trường hợp 1: \(y+1=11.13k=143k\Leftrightarrow y=143k-1\)và \(y-1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=3;k'=61\)thỏa điều kiện \(\Rightarrow x=183\Rightarrow n=183184\)

  - Trường hợp 2: \(y-1=11.13k=143k\Leftrightarrow y=143k+1\)và \(y+1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=4;k'=82\)thỏa điều kiện \(\Rightarrow x=328\Rightarrow n=328329\)

  - Trường hợp 3: \(y+1=7.11k=77k\Leftrightarrow y=77k-1\)và \(y-1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)chỉ có \(k=11;k'=65\)thỏa điều kiện \(\Rightarrow x=715\Rightarrow n=715716\)

  - Trường hợp 4: \(y-1=7.11k=77k\Leftrightarrow y=77k+1\)và \(y+1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

  - Trường hợp 5: \(y+1=7.13k=91k\Leftrightarrow y=91k-1\)và \(y-1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)chỉ có \(k=8;k'=66\)thỏa điều kiện \(x=528\Rightarrow n=528529\left(k,k'\varepsilon N\right)\)

  - Trường hợp 6: \(y-1=7.13k=91k\Leftrightarrow y=91k+1\)và \(y+1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

Vậy các số thỏa mãn đề bài là: 183184, 328329, 715716, 528529.


Các câu hỏi tương tự
Nguyễn Mạnh Hà
Xem chi tiết
Trần Nguyễn Gia Linh
Xem chi tiết
Trịnh Xuân Bình
Xem chi tiết
tuấn anh lê
Xem chi tiết
Phạm Mai Trang
Xem chi tiết
Linh Kiều
Xem chi tiết
trần phương linh
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Đăng Khoa
Xem chi tiết