Tìm tất cả các số hữu tỉ x sao cho giá trị của biểu thức \(P\left(x\right)=x^2+x+8\) là một số chính phương
Bài 1. (4 điểm)
1) Cho biểu thức với và
Tìm tất cả các giá trị nguyên của x sao cho biểu thức A nhận giá trị nguyên
2) Cho phương trình với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt sao cho
Tìm x là số hữu tỉ sao cho 6√x +2/√x+2 là số chính phương
Cho phương trình x 2 – (2m + 1)x + m 2 + 1 = 0, với m là tham số. Tìm tất cả các giá trị của m ∈ ℤ để phương trình có hai nghiệm phân biệt x 1 ; x 2 sao cho biểu thức P = x 1 x 2 x 1 + x 2 có giá trị là số nguyên
A. m = 1
B. m = 2
C. m = −2
D. m = 0
Tìm các giá trị của x để biểu thức P(x)=x2+x+8 là một số chính phương.
Cho biểu thức A = \(\left(\dfrac{8x\sqrt{x}-1}{2x-\sqrt{x}}-\dfrac{8x\sqrt{x}+1}{2x+\sqrt{x}}\right):\dfrac{2x+1}{2x-1}\left(x>0;x\ne\dfrac{1}{2};x\ne\dfrac{1}{4}\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A là số chính phương
Tìm số hữu tỉ x sao cho biểu thức sau có giá trị là số nguyên
E= căn x +1/ căn x -1
Cho x=\(2+\sqrt{5}\).Tìm tất cả các số hữu tỉ a,b sao cho x là nghiệm của phương trình :\(x^3+ax^2+bx+c=0\)
Cho phương trình x2+(m-1)x-6=0. Tìm tất cả các giá trị của m để phương trình xó 2 nghiệm phân biệt x1,x2 sao cho biểu thức
A=(x12-9)(x22-4) đạt giá trị lớn nhất