Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Tìm tất cả các giá trị thực của tham số m để hệ 3 2 x + x + 1 - 3 2 + x + 1 + 2017 x ≤ 2017 x 2 - ( m + 2 ) x + 2 m + 3 ≥ 0 có nghiệm.
Câu 8 : Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m+1\right)x-1\) đạt cực đại tại x=\(-\)2
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình 3 ( 1 + x + 3 - x ) - 2 ( 1 + x ) ( 3 - x ) ≥ m nghiệm đúng với mọi x ≤ - 1 ; 3 ?
A. m ≤ 6 .
B. m ≥ 6 .
C. m ≥ 6 2 - 4 .
D. m ≤ 6 2 - 4 .
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 - m x 2 + ( m + 1 ) x - 1 đạt cực đại tại x = - 2 ?
A. Không tồn tại m
B. -1
C. 2
D. 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 + ( m 2 - m + 2 ) x 2 + ( 3 m 2 + 1 ) x đạt cực tiểu tại x = - 2
B. m = 3 .
C. . m = 1
Hình bên là đồ thị của hàm số y = x 3 - 3 x Tìm tất cả các giá trị thực của tham số m để phương trình 64 | x | 3 = ( x 2 + 1 ) 2 ( 12 | x | + m ( x 2 + 1 ) ) có nghiệm.
A.
B. Với mọi m
C.
D.
Câu 3: Tìm tất cả các giá trị của tham số m để hàm số \(y=x^3-3x^2+mx+1\) đạt cực tiểu tại x=2