Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 m x + 4 ) có tập xác định là ℝ .
A . - 2 ≤ m ≤ 2
B . m = 2
C . m > 2 h o ặ c m < - 2
D . - 2 < m < 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 m x + 4 ) có tập xác định là R
A. - 2 ≤ m ≤ 2
B. m = 2
D. -2 < m < 2
Tìm tất cả các giá trị thực của tham số m để y = l o g ( x 2 - 4 x - m + 1 ) có tập xác định là R
Tìm tất cả các giá trị thực của tham số m để hàm số y= log( x2- 2x- m+ 1) có tập xác định là R
A. m≥ 0.
B. m<0
C. m ≤ 2.
D. m> 2.
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 4 x - m + 1 ) có tập xác định là R
A. m > -4
B. m < 0
C. m < -4
D. m < -3
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 4 x - m + 1 ) có tập xác định là ℝ .
A. m > -4
B. m < 0
C. m < -4
D. m < -3
Tìm tất cả các giá trị thực của tham số m để hàm số y = log ( x 2 - 2 x - m + 1 ) có tập xác định là R:
A. m ≥ 0
B. m < 0
C. m ≤ 2
D. m > 2
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số y= x + m 2 + 2 m x - 2 trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B= 19 2
A. m=1; m=-3
B. m=-1; m=3
C. m=3; m= -3
D. m=-4