Xét dãy số: ...,\(a_{-3},a_{-2},a_{-1},a_0,a_1,a_2,a_3,...\), được định nghĩa bởi
\(a_n-\left(n+1\right)\times a_{n-2}=\left(n+3\right)^2\)với mọi số nguyên n. Tính \(a_0\)
cho DÃY SỐ a1, a2,.......an thỏa mãn a2=\(\frac{a1-1}{a1+1}\); \(a3=\frac{a2-1}{a2+1}\);; .....; an=\(\frac{a_{n-1}-1}{a_{n-1}+1}\)
a, CMR a1=a5
b, tính tổng 5 số hạng đầu của dãy
Cho \(a_n=\left(-1\right)^n\cdot\left(\frac{n^2+n+1}{n\text{!}}\right)\)Với n > 0.
Tính \(A=a_1+a_2+a_3+...+a_{2017}\)
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
-Cho số n ở hệ cơ số 10, có không quá 20 chữ số và không chứa các số 0 không có nghĩa ở đầu. Bằng cách xóa một hoặc một vài chữ số liên tiếp của n (nhưng không xóa hết tất cả các chữ số của n) ta nhận được những số mới. Số mới được chuẩn hóa bằng cách xóa các chữ số 0 vô nghĩa nếu có. Tập số nguyên D được xây dựng bằng cách đưa vào nó số n, các số mới khác nhau đã chuẩn hóa và khác n. Ví dụ, với n = 1005 ta có thể nhận được các số mới như sau:
- Bằng cách xóa một chữ số ta có các số: 5 (từ 005), 105, 105, 100;
- Bằng cách xóa hai chữ số ta có các số: 5 (từ 05), 15, 10;
- Bằng cách xóa 3 chữ số ta có các số: 5 và 1.
-Tập D nhận được từ n chứa các số {1005, 105, 100, 15, 10, 5, 1}. Trong tập D này có 3 số chia hết cho 3, đó là các số 1005, 105 và 15.
-Yêu cầu: Cho số nguyên n. Hãy xác định số lượng số chia hết cho 3 có mặt trong tập D được tạo thành từ n.
-Dữ liệu: Vào từ file văn bản NUMSET.INP gồm một dòng chứa số nguyên n.
- Kết quả: Đưa ra file văn bản NUMSET.OUT một số nguyên – số lượng số chia hết cho 3 tìm được.
môn tin học pascal nhé
giúp với mn ới
-Cho số n ở hệ cơ số 10, có không quá 20 chữ số và không chứa các số 0 không có nghĩa ở đầu. Bằng cách xóa một hoặc một vài chữ số liên tiếp của n (nhưng không xóa hết tất cả các chữ số của n) ta nhận được những số mới. Số mới được chuẩn hóa bằng cách xóa các chữ số 0 vô nghĩa nếu có. Tập số nguyên D được xây dựng bằng cách đưa vào nó số n, các số mới khác nhau đã chuẩn hóa và khác n. Ví dụ, với n = 1005 ta có thể nhận được các số mới như sau:
♦ Bằng cách xóa một chữ số ta có các số: 5 (từ 005), 105, 105, 100;
♦ Bằng cách xóa hai chữ số ta có các số: 5 (từ 05), 15, 10;
♦ Bằng cách xóa 3 chữ số ta có các số: 5 và 1.
-Tập D nhận được từ n chứa các số {1005, 105, 100, 15, 10, 5, 1}. Trong tập D này có 3 số chia hết cho 3, đó là các số 1005, 105 và 15.
-Yêu cầu: Cho số nguyên n. Hãy xác định số lượng số chia hết cho 3 có mặt trong tập D được tạo thành từ n.
-Dữ liệu: Vào từ file văn bản NUMSET.INP gồm một dòng chứa số nguyên n.
- Kết quả: Đưa ra file văn bản NUMSET.OUT một số nguyên – số lượng số chia hết cho 3 tìm được.
môn tin học pascal nhé
giúp với mn ới
cho 2017 số nguyên dương a1,a2,a3,...,a2017 thoả mãn\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}=1009...???\)
chứng minh có ít nhất 2 trong 2017 số tự nhiên trên bằng nhau
Với mỗi số thực a, ta gọi phần nguyên không vượt quá a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
mọi người ơi giúp mình vớiiiiii..đừng thấy dài mà bỏ qua.ai giúp dc câu nào thì giúp,mỗi người một chút.mk xin cảm ơn trước
câu 1: tìm x;y thuộc z thỏa mãn 2x3+xy=7
câu 2:c/m nếu c2+2(ab-ac-bc)=0 và b;b+a đều khác 0 thi:
\(\frac{a^2+\left(a-c^2\right)}{b^2+\left(b-c^2\right)}=\frac{a-c}{b-c}\)
câu 3:cho 2001 số nguyên dương a1;a2;a3;....a2000;a2001 thỏa mãn điều kiện:
\(\frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}=....=\frac{a_{2001}}{a_{2000}}=\frac{a_1}{a_{2001}}\).c/m rằng:a1=a2=a3=...a2000=a2001
câu 4:tìm số dư kh chia 20132012 cho 7
câu 5:tìm n thuộc N sao cho 28+211+2n là số chính phương