Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My Phan

tìm tất cả các cặp số (x;y) thỏa mãn\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\end{cases}}\)

Kiệt Nguyễn
14 tháng 4 2020 lúc 20:56

\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)

\(ĐK:x\ge\frac{1}{2};y\ge0\)

Khách vãng lai đã xóa
Kiệt Nguyễn
5 tháng 7 2020 lúc 19:59

\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)

\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)

Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)

\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)

\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)

Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)

Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)

Suy ra (3) vô nghiệm

Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đoàn Thanh Bảo An
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
Thiên An
Xem chi tiết
Nhi Đào Quỳnh
Xem chi tiết
lê duy mạnh
Xem chi tiết
lê duy mạnh
Xem chi tiết
Hoàng Hiếu Võ
Xem chi tiết
Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Nguyễn Cảnh Kyf
Xem chi tiết