Tìm tập nghiệm S của bất phương trình log0,2 (x – 1) < log0,2 (3 – x).
A. S = - ∞ ; 3
B. S = 2 ; 3
C. S = 2 ; + ∞
D. S = 1 ; 2
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình logm(2x2 + x + 3) ≤ logm(3x2 - x). Biết rằng x = 1 là một nghiệm của bất phương trình.
Tìm tập nghiệm của bất phương trình:
A. x > 3/2 B. x < 3/2
B. x > 2/3 D. x < 2/3
Tìm tập nghiệm S của bất phương trình log 1 2 ( x + 1 ) < log 1 2 ( 2 x - 1 )
A. S = ( 1 2 ; 2 )
B. S = (-1; 2)
C. S = ( 2 ; + ∞ )
D. S = ( - ∞ , 2 )
Tìm tập nghiệm của bất phương trình: 2 2 x 8 > 1
A. x > 3/2 B. x < 3/2
C. x > 2/3 D. x < 2/3
Cho hàm số f(x) = log2x và g(x) = log2(4-x) . Tìm tập nghiệm của bất phương trình f(x + 1) < g(x + 2)
A. S = - ∞ ; 1 2
B. S = - 1 ; 1 2
C. S = (0; 2).
D. S = - ∞ ; 2
Tập nghiệm S của bất phương trình log 1 2 3 x - 2 > log 1 2 4 - x là
A. S = 3 2 ; 4
B. S = - ∞ ; 3 2
C. S = 2 3 ; 3
D. S = 2 3 ; 3 2
Tập nghiệm S của bất phương trình ( 17 - 12 2 ) x ≤ ( 3 + 8 ) x 2 là:
D. [–2;0].
Tìm tập nghiệm của bất phương trình:
A. x < 3 B. x ≥ 1
C. 1 ≤ x < 3 D. x < 1