Gọi số tự nhiên đó là a.
Vì a chia 11 dư 4 nên ( a + 7 ) \(⋮\) 11
Vì a chia 13 dư 6 nên ( a + 7 ) \(⋮\) 13
\(\Rightarrow a+7\in BC\left(11,13\right)\)
Ta có: [11, 13] = 11 . 13 = 143
\(\Rightarrow a+7\in B\left(143\right)=\left\{0;143;286;429;572;...\right\}\)
\(\Rightarrow a\in\left\{-7;136;279;422;565;...\right\}\)
Mà a nhỏ nhất có hàng đơn vị là 5 nên a = 565
Vậy số cần tìm là 565.