Gọi số nhỏ nhất có 30 ước là A
Khi phân tích A ra thừa số nguyên tố A có dạng: A = ax.by.cz....
Số ước của A là: (x + 1)(y + 1)(z + 1).... = 8
Ta viết 9 dưới dạng tích của 1 hay nhiều thừa số lớn hơn 1 là 8 = 8 = 2.4
+) A có 1 thừa số nguyên tố.
=> A = a7 . Mà a nhỏ nhất nên ta chọn cơ số nhỏ nhất (số nguyên tố) => A = 128
+) A có 2 thừa số nguyên tố.
=> A = ax.by (giả sử x > = y không làm mất đi tính tổng quát của bài tóan)
Số ước của A là (x + 1)(y + 1) = 4
=> x + 1 = 4 => x = 3
=> y + 1 = 2 => x = 1
=> A = a3.b
Vì A nhỏ nhất nên ta chọn số mũ lớn với cơ số nhỏ
=> A = 23.3 = 24
Gọi số cần tìm là A. (A là hợp số có 12 ước)
Đặt A = ax.by = cm.dn.ep (a, b, c, d, e $\notin$∉ {0; 1} vì khi đó A sẽ không phải là hợp số)
Mà 12 = 1.12 = 2.6 = 3.4 = 2.2.3
=> Số ước của A có dạng (x + 1).(y + 1) = 1.12 = 2.6 = 3.4 hoặc (m + 1).(n + 1).(p + 1) = 2.2.3
Xét từng trường hợp:
Trường hợp 1: Với (x + 1).(y + 1) = 1.12 suy ra x = 0 và y = 11 => A = a0.b11 = 1.b11 = b11
.Để A nhỏ nhất thì b = 2 , lúc đó A = 211 = 2048
Trường hợp 2: Với (x + 1).(y + 1) = 2.6 suy ra x = 1 và y = 5 => A = a1.b5 = a.b5. Để A nhỏ nhất thì b = 2 và a = 3, lúc đó A = 31.25 = 96
Trường hợp 3: Với (x + 1).(y + 1) = 3.4 suy ra x = 2 và y = 3 => A = a2.b3. Để A nhỏ nhất thì a = 3 và b = 2
, lúc đó A = 32.23 = 72
Trường hợp 4 : Với (m + 1).(n + 1).(p + 1) = 2.2.3 suy ra m = 1; n = 1 và p = 2 => A = c2.d2.e3..Để A nhỏ nhất thì c = 2 ; a = 3 và b = 5 => A = 22.3.5 = 60
Trong các trường hợp trên, ta chọn A nhỏ nhất. Vậy A = 60