\(\frac{2n+5}{n+1}\in N\)
\(\frac{2n+5}{n+1}=\frac{2n+2+3}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2\frac{3}{n+1}\)Mà \(2\frac{3}{n+1}\in N\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
2n + 5 cia hết cho n + 1
=> [(2n + 2) + 5 - 2] chia hết cho n + 1
=> [(2.n + 1.2)+3] chia hết cho n + 1
=> [2.(n+1)+3] chia hết cho n + 1
có n + 1 chia hết cho n + 1 => 2.(n+1) cũng chia hết cho n + 1
=> 3 chia hết cho n +1
=> n+1 thuộc ư(3)
=> n + 1 thuộc {-1;-3;1;3}
=> n thuộc {-1-1 ; -3-1 ; 1-1; 3-1}
=> n thuộc {-2;-4;0;2} mà n thuộc N
=> n thuộc {0;2}
vậy......
2n+5 \(⋮\) n+1 <=> 2(n+1)+3 \(⋮\) n+1
=> 3 \(⋮\) n+1 (vì 2(n+1) \(⋮\) n+1)
=> n+1 \(\in\) Ư(3) = {1; 3}
n+1 = 1 => n = 0
n+1 = 3 => n = 2
Vậy n \(\in\) {0; 2}