\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)
\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Leftrightarrow2^x=2^3\)
\(\Leftrightarrow x=3\)
Vậy x = 3
2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8
=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23
đặt A= 1+2+22+...+22015
=>2A=2+22+23+..+22016
=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1
\(\Rightarrow\)2x.(22016-1)=23.(22016-1)
=>x=3
0o0_Boss secret_0o0
Nên ghi dấu \(\Leftrightarrow\) để chỉ hai pt tương đương nhé
2x + 2x+1 + 2x+2 + ... + 2x+2015 = 22019 - 8
<=> 2x( 1 + 2 + 22 + 23 + ... + 22015 ) = 22019 - 23
Đặt A = (1 + 2 + 22 + 23 + ... + 22015 )
2A = 2( 1 + 2 + 22 + 23 + ... + 22015 ) = 2 + 22 + 23 + ... + 22016
2A - A = ( 2 + 22 + 23 + ... + 22016 ) - ( 1 + 2 + 22 + 23 + ... + 22015 )
=2 + 22 + 23 + 24 + ... + 22016 - 1 - 2 - 22 - 23 - ... - 22015
= 22016 - 1
=> 2x( 22016 - 1 ) = 22019 - 23
<=> 2x( 22016 - 1 ) = 23( 22016 - 1 )
<=> x = 3