Gọi số tự nhiên nhỏ nhất có 3 chữ sốcần tìm là a
Tao có: + a : 11 dư 5 => a=11m+5 => a+6=(11m+5)+6 = 11m+11=11(m+1) \(⋮\)11 (\(m\in N\))
Vì 77 \(⋮\)11 => (a+6)+77 \(⋮\)11 => (a+83) \(⋮\)11 (1)
+ a : 13 dư 8 => a=13n+8 => a+5=(13n+8)+5 = 13n+13=13(n+1) \(⋮\)11 (\(n\in N\))
Vì 78 \(⋮\)13 => (a+5)+78 \(⋮\)13 => (a+83) \(⋮\)13 (2)
Từ (1) & (2) => a+83 \(⋮\)BCNN(11;13) => a+83 \(⋮\)143 => a=143k-83 (k \(\in\)N*)
Để a đạt giá trị nhỏ nhất ta chọn : k=2 => 143.2-83=203
Vậy a=203