Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số phải tìm là A => (A - 5) chia hết cho 29 và (A- 5) chia 31 dư 23 (25-5=23)
Mỗi lần bớt thương của phép chia (A-5) chia 31 đi 1 thì ta được thêm 31 mà số 31 này chia cho 29 còn dư 2.
Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần)
Vì là số nhỏ nhất nên khi bớt thương đi 3 thì thương sẽ còn lại là 0.
Vậy (A-5) là : 31 x 3 + 23 = 116.
Số cần tìm là : 116 + 5 = 121
Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Gọi số phải tìm là A => (A - 5) chia hết cho 29 và (A- 5) chia 31 dư 23 (25-5=23)
Mỗi lần bớt thương của phép chia (A-5) chia 31 đi 1 thì ta được thêm 31 mà số 31 này chia cho 29 còn dư 2.
Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần)
Vì là số nhỏ nhất nên khi bớt thương đi 3 thì thương sẽ còn lại là 0.
Vậy (A-5) là : 31 x 3 + 23 = 116.
Số cần tìm là : 116 + 5 = 121
Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Số phải tìm có dạng 29.a + 5 hoặc 31.b + 28 với a, b là số tự nhiên.
29.a + 5 = 31.b + 28
29.a + 5 = 29.b + 2b + 28
29a - 29b = 2b + 23
29(a-b) = 2b + 23
Vì số phải tìm là số nhỏ nhất nên có khả năng a - b = 0 hoặc a - b= 1
a-b = 0 thì bất khả vì khi đó b < 0 nên a - b =1
suy ra:
29 = 2b + 23
=> b = 3
Mà số phải tìm có dạng 31.b + 28 nên số phải tìm là
31.3 + 28 = 121
Số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài