\(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)
\(\Leftrightarrow\)\(52-12n\ge0\)
\(\Leftrightarrow\)\(12n\le52\)
\(\Leftrightarrow\)\(n\le\frac{13}{3}\)
Vì \(n\in N\) nên \(n=\left\{0;1;2;3;4\right\}\)
\(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)
\(\Leftrightarrow\)\(52-12n\ge0\)
\(\Leftrightarrow\)\(12n\le52\)
\(\Leftrightarrow\)\(n\le\frac{13}{3}\)
Vì \(n\in N\) nên \(n=\left\{0;1;2;3;4\right\}\)
Tìm số tự nhiên n thỏa mãn
a) 5(2−3n)≥−3n−42;
b) n + 1 2 ≤ 3 + ( n + 2 ) ( n − 2 )
tìm số tự nhiên n thỏa mãn
a) 5(2-3n)+42+3n \(\ge\)0
b) (n+1)2-(n+2)(n-2)\(\le\)1,5
Tìm số tự nhiên n thỏa mãn :
\(a,5\left(2-3n+42+3n\right)\ge0\)
\(b, \left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le1,5\)
Tìm số tự nhiên m thỏa mãn đồng thời cả 2 phương trình sau:
a) 4(n+1)+3n-6<19 và b) (n-3)^2-(n+4)(n-4)< hoặc = 43
Tìm số tự nhiên n có 2 c/số thỏa mãn 2n+1 và 3n+1 là các số chính phương
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương
Tìm số tự nhiên n để (n^2 + 3n + 1) / (n+2) là số nguyên. CẦN gấp! Chiều nộp r
Cho m,n là các số tự nhiên thỏa mãn 2m2+m=3n2+n
Cho các số tự nhiên m, n thỏa mãn 2m2 + m = 3n2 + n. Chứng minh 3(m+n) + 1 là số chính phương.