Ta có : \(n^2-6n+5=\left(n-5\right)\left(n-1\right)\)(*)
Để (*) là số nguyên tố khi \(n-5=1\)và \(n-1\)là số nguyên tố
\(\Leftrightarrow n=6\left(tm\right)\)
Vậy n = 6 thì (*) là số nguyên tố
Ta có : \(n^2-6n+5=\left(n-5\right)\left(n-1\right)\)(*)
Để (*) là số nguyên tố khi \(n-5=1\)và \(n-1\)là số nguyên tố
\(\Leftrightarrow n=6\left(tm\right)\)
Vậy n = 6 thì (*) là số nguyên tố
tìm số tự nhiên n để 5^(2n^2-6n+2)-12 là số nguyên tố
Tìm các số tự nhiên n để 5^(2n^2-6n+2) -12 là số nguyên tố
Mọi người giúp em với , em cần gấp =() :
Câu 1 : Tìm số tự nhiên \(n\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố
Câu 2 : Chứng minh rằng không tồn tại các bộ 3 số nguyên \(\left(x;y;z\right)\)thỏa mãn đẳng thức : \(x^4+y^4=7z^4+5\)
Câu 3 : Chứng minh rằng \(\left(a,5\right)=1\)thì \(a^{8n}+3a^{4n}-4\)chia hết cho 100.
Câu 4 : Có hay không số nguyên tố \(p\) thỏa mãn \(8p-1;8p+1\)cũng là số nguyên tố ? Giải thích ?
Câu 5 : Tìm \(n\)nguyên sao cho \(s=n^4+10n^3+40n^2+78n+63\)là số chính phương
Câu 6 : Tìm tất cả số tự nhiên \(n\)để \(n^3-n^2-7n+10\)là số nguyên tố .
Bài 1:
a) Tìm số nguyên tố thỏa mãn : (p+4), (p+8) cũng là các số nguyên .
b) Tìm số hữu tỉ a thỏa mãn : 2a + 5a là số tự nhiên và là số chính phương.
Tìm các số nguyên tố p thỏa mãn :p^2-p-2/2 là lập phương của số tự nhiên
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
Tìm tất cả các số tự nhiên m,n sao cho x3m^2++6n-61 +4 à số nguyên tố.
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
Tìm số tự nhiên k thỏa mãn k^2 - kp là số chính phương ( p là số nguyên tố)
P/s: có thể biểu diễn k theo p, không cần tìm ra số cụ thể