Với \(n\ge5\):
\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)
Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))
mà số chính phương không thể có tận cùng là \(3\)nên loại.
Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn.