\(A=\frac{8n+193}{4n+3}\)
\(=\frac{8n+6+187}{4n+3}\)
\(=\frac{2\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Đến chỗ này chắc bạn làm tiếp được
n=0
cách giải thì mk chưa nghĩ ra
mong bạn thông cảm
Gọi d \(\in\)ƯC ( 8n + 193 ; 4n + 3 )
=> \(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\)
=> \(\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
=> \(\hept{\begin{cases}8n+193⋮d\\8n+6⋮d\end{cases}}\)
=> ( 8n + 193 ) - ( 8n + 6 ) \(⋮\)d
=> 8n + 193 - 8n - 6 \(⋮\)d
187 \(⋮\)d
=> d \(\in\)Ư( 187 ) = { 1 ;-1 ; 187 ; -187 }
Lại có : n là số tự nhiên
187 là số nguyên tố
=> A là PSTG
Mk chưa chắc đã đúng phần cuối đâu . Phần đầu chắc chắn đúng đó !!!
#nhokchominhnha