Ta có : \(\frac{3n+2}{n-3}=\frac{3\left(n-3\right)+11}{n-3}=3+\frac{11}{n-3}\)
Để \(\frac{3n+2}{n-3}\)là số nguyên thì 11 \(⋮\)n - 3 => n - 3 \(\in\)Ư(11) = {1; - 1; 11; -11}
Với : n - 3 = 1 => n = 4
n - 3 = -1 => n = 2
n - 3 = 11 => n = 14
n - 3 = -11 => n = -8
Vậy n = {4; 2; 14; -8} thì \(\frac{3n+2}{n-3}\)là số nguyên