Xét các giá trị \(n=0;1\) không thỏa mãn
Xét n là số lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow3^n-1=3^{2k+1}-1=9^k.3-1=9^k.3-3+2\)
\(=3\left(9^k-1\right)+2\)
Ta có : \(9^k-1⋮9-1\) hay \(9^k-1⋮8\) \(\Rightarrow3\left(9^k-1\right)+2\) chia cho 8 dư 2 (loại)
Xét n là số 8 \(\Rightarrow n=2k\)
\(\Rightarrow3^n-1=3^{2k}-1=9^k-1⋮8\forall k\in N\)
Vậy \(3^n-1⋮8\) khi n chẵn và \(n\ge2\)
Chán quá, mất công viết cau hỏi này giờ rồi ko up đc